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Final Report
on
Highly Accurate Adaptive Finite Element Schemes
for Nonlinear Hyperbolic Problems

1 Introduction

This document is a final report of research activities supported under General Contract
DAAL03-89-K0120 between the Army Research Office and The University of Texas at Austin.
The report describes work performed during the period July 1, 1989 and June 30, 1992. The
Principal Investigator of the project was Professor J. T. Oden. The project supported several
Ph.D. students over the contract period, two of which are scheduled to complete dissertations
during the 1992-93 academic year. Research results produced during the course of this effort
led to six journal articles, five research reports, four conference papers and presentations,
one book chapter, and two dissertations (nearing completion). More complete sdmmarics of
these documents are given later in this report.

It is felt that several significant advances were made during the course of t?xs project that
should have an impact on the field of numerical analysis of wave phenomcn These include
the development of high-order, adaptive, hp-finite element methods for clas odvnarmc calcu-
lations and high-order schemes for linear and nonlinear hyperbolic svsten, is. Also, a theory
of multi-stage Taylor-Galerkin schemes was developed and implemented’in the analysis of
several wave propagation problems, and was configured within a genera hp-adaptive strat-
egy for these types of problems. Further details on research results ard on areas requiring

additional study are given in the next section of this report and in an;’appendlx.




2 Review of Research Results

2.1 General Goals

Despite a half century of study, despite the introduction of modern computational techniques
and machines, and despite a multitude of papers, conferences, and journals on the subject,
the field of numerical analysis of complex wave phenomena has actually not progressed much
beyond its glorious beginnings in the pre-World War II era of computational modeling. In
a sense, the basic issues today are the same as they have been for a half century: accuracy,
stability, and consistency of the numerical approximation of the propogations of functions
which possibly possess discontinuities. Many textbooks are filled with examples of successful
schemes for a simple one-dimensional linear wave equation, or perhaps Burger’s equation
in one dimension. Indeed, the theory of numerical analysis of wave phenomena, as it exists
today, is still basically a one-dimensional theory, and the most significant advances in the
subject over the last decade are the introduction of methods which scem to work well for
certain one-dimensional cases.

Among major goals of research in this area are the development of highly accurate, stable,
non-oscillatory, and convergent numerical approximations to study a multitude of features
of solutions of hyperbolic systems of conservation laws that can be used efficiently to model
wave phenomena of interest in science and engineering. But these goals have proved to be
paradoxical; e.g., monotone schemes may non-oscillatory and stable, but they are only first—
order accurate, and higher order schemes, while providing higher accuracy, are almost always
oscillatory and frequently unstable. Moreover, for nonlinear hyperbolic systems, questions
of uniqueness of solutions arise and the additional requirement that the numerical solution
be “physically meaningful” must be added to the list of criteria.

The emergence of adaptive computational schemes over the last decade has provided a
possible basis for achieving the historical goals in the numerical analysis of wave phenomena:
manipulate mesh parameters in such a way that both high-order accuracy and stability can
somehow be achieved. In this way, the computational process is optimized, and any tendency
of the scheme to oscillate or to lose accuracy would, in theory, be compensated by appropriate
adaptation of the control parameters. A key to this approach is the basic idea of developing
reliable a posteriori estimates of the numerical error in a finite element approximation, mesh
paramcters such as the mesh size f, spectral order of approximation p, or the location or
the relocation of nodes, can be adapted to keep error within preset tolerances. Importantly,
the computational cost can also be added to the cost functional so that, at least in theory,
highly efficient schemes can be used to achieve these classical goals.

The project summarized in this final report had as its basic objective the exploration of
new types of hp-finite element methods for the analysis of wave propagation problems, with
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particular emphasis on stress waves in solids. The starting points for all of the studies in
this effort were the following: a high-level hp data structure was constructed in which the
mesh size h and the spectral order p within a finite element mesh were designed to be free
parameters. The capability for either using h-refinement, p-enrichment, or Ap-refinements
was embodied in the data structure, the data structure was designed to admit fairly general
a posteriori error estimates, so that some research and experimentation could be done on
the calculation of errors to drive any adaptive process. Finally, the specifics of the adaptive
process were left open so that a number of different strategies could be explored. With
regard to the general approaches considered in the research, two were explored:

1. Use of discontinuous Ap-finite element methods for nonlinear hyperbolic systems, and

2. the use of continuous hp-approximations with very high-order implicit schemes for the
particular classes of hyperbolic systems that arise in the study of stress waves in solids.

These two approaches are discussed in more detail in the following sections and some tech-
nical details are given in the appendices.

2.2  Stress Waves in Solids: RK and TG Schemes

We briefly outline here the approach and some results of the research on high-order schemes
for calculation of transient phenomena in elastic solids.

To construct a successful adaptive scheme for the hyperbolic partial differential equa-
tions that occur in linear elastodynamics, the basic ingredients mentioned above must first
be addressed: 1), a functional kp-adaptive data structures in hand, a high-order temporal
scheme must be identified to advance the solution in time; 2}, an efficient method of a pos-
teriori error estimation must be developed to provide the data for controlling the numerical
process; 3}, an adaptive strategy must be developed to control (optimize) the mesh during
the evolution of the wave phenomena.

In the early months of this phase of the project, considerable effort was spent exploring
classical high-order methods for time integration. Surprisingly, relatively few existing meth-
ods survive our criteria for efficiency and applicability to very large systems. The classical
Adams-Bashforth methods, for exampie, require a significant amount of memory and are
only conditionally stable. The Runge-Kutta methods, however, do seem to offer a number
of advantages. They are implemented locally over a time step, which was convenient for hp-
adaptive schemes, and they could be used to produce results of arbitrarv order in time. A
great dcal of time was spent during carly pha<es of this project encoding and experimenting
various forms of Runge-Kutta methods. including the singly-implicit Runge-Kutta schemes,
nnplicit Runge-Kutta schemes, and traditional semi-implicit Runge-Kutta schemes. Tlhese




proved to be somewhat effective, but in many cases also were accompanied by unpleasant
oscillations for very high order schemes.

A new study was initiated on a completely new family of methods which are of a form
similar to so-called Taylor-Galerkin methods used in certain flow calculations. Traditionally,
Taylor-Galerkin methods no higher than third-order appear in the literature, and these are
known to be very inefficient and expensive. However, it was observed that by reducing the
elastodynamics problem to a first-order hyperbolic system and then applying the Taylor-
Galerkin strategy, a recurrence formula could be derived which could produce very robust
and stable schemes of arbitrary high order. Thus was invented the first high-order Taylor-
Galerkin schemes for wave propagation. These schemes are still under study, but they are
known to possess many attractive features and have proved to be quite superior to traditional
Runge-Kutta methods in a number of numerical experiments.

In the final months of this phase of the project, still another version of the implicit, high-
order, multi-staged Taylor-Galerkin scheme were developed in which second-order hyperbolic
systems are derived which are equivalent to the equations of linear elastodynamics. It .
observed that the governing operators naturally split into similar component parts which
made application of the TG ideas straightforward.

Considerable time was spent on a posteriori error estimation for these types of schemes.
These a posteriori estimates were developed for not only the time-dependent case but also
for the elliptic systems obtained during each step of the Taylor-Galerkin approximation.
The situation is this: rigorous mathematical theory for a posteriori error estimates for linear
elliptic systems was developed and applied step-wisc to the Taylor-Galerkin scheme. In the
Taylor-Galerkin scheme, the elliptic step, of course, involves the time step so that the @
posteriori estimate does include a description of this mesh parameter. A number of oppor-
tunities for measuring temporal error also present themselves. In particular, the usual use of
predictor and a corrector in time allow for a fairly straightforward estimate of the temporal
component of the approximation error. To date, a number of test problems have been run
and results suggest that the total error in the two-dimensional elastodynamics problem can
be kept under control and that fairly accurate error estimates can be obtained.

Finally, it is necessary to address the Ap-adaptive strategy. This is an area in which con-
siderable additional work reamins to be done. During the course of the project reported here,
a number of so-called three-step schemes were explored in which criteria were established
for producing first an hA-refinement of a mesh and then a p-enrichment to control the error.
Various versions of this strategy have been studied experiinentally. The meshes obtained by
these schemes are certainly not optimal, and some are quite far from optimal, but they can
be implemented with' great speed and thus the overall computational time of implementation
often proves to be quite acceptable.




The status of these schemes is this: a number of papers on the mathematical ideas and
the implementation have been published, a working research code for two-dimensional cases
has been developed, and a number of test problems have been run. Further work remains to
be done on error estimation, adaptive strategy, and on numerous details of implementation,
such as the possibility of using domain decomposition and parallelization during the compu-
tational process. Mathematical issues deserving study include the study of stability of the
TG schemes, a priori error estimation, proof of convergence of the hp-adaptive strategies,
and further work on rigorous a posteriori estimates.

2.3 Discontinuous hp Methods for Nonlinear Conservation Laws

As noted carlier, much as been said in recent literature on the numerical solution of hy-
perbolic conservation laws with regard to the use of flux limiting methods and high—order
approximations. This has led to the notions of TVD schemes, ENO schemes, etc., all of which
seem to work very well for one-dimensional problems provided that no boundary conditions
of significance are imposed. To extend thesec ideas to reasonable two— and three-dimensional
cases involves some significant generalizations of the existing theory.

One gencralization that was felt deserved some study was the notion of TVB (total vari-
ation bounded) algorithms developed Cockburn and Shu. While their work itself originally
focused on one-dimensional cases, much of their theory is general and potentially extendable
to higher dimensional cases.

As another thrust in the present research effort, the study of high-order Ap schiemes
for discontinuous Galerkin approximations of nonlinear hyperbolic systems was undertaken.
These were based on generalizations of the Cockburn-Shu TVB schemes, and emploved high-
order hp quadrilateral finite element approximations in two dimensions. The key to these
types of methods is the construction of a special projection operator which maintains the
TV character of the numerical solution. During this project, an algorithm {or producing
such a projection was indeed developed and has been applied successfully to discontinuous Ap
approximations of hyperbolic conservation laws. The status of this work is that one paper
on the subject has been published, another is in preparation. Several important details
remain unresolved. These include the development of a useful adaptive strategy for these
techniques, and a numerical strategy that truly exploits the spectral character of these types
of approximations while using the h-adaptivity to control oscillations near shocks aud contact
discontinuities.
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APPENDIX

High-Order Taylor-Galerkin and Adaptive
hp- Methods for 2nd order Hyperbolic
Systems

In this Appendix a brief summary of some of the details of approach and numerical results
of the hp-adaptive Taylor-Galerkin algorithms described in the text is given. This appendix
is excepted from an article on the subject which is entitled "High—Order Taylor-Galerkin
and Adaptive h—p Methods for Hyperbolic Systems” by A. Safjan and J. T. Oden.

1 INTRODUCTION

“'he use of high-order adaptive finite element methods for elliptic boundary-value
problems in which the mesh size / and the local spectral order p of the approximation are
varied in order to control the approximation error have been shown to producs exponential
rates of convergence (e.g., [7, 8]). These methods treat the mesh variables & and p as
arbitrar’ paramcters, and, through a fairly elaborate data structure, distributc mesh sizes
and ordcrs nonuniformly over a mesh to control local errors, which are estimated using a-
posteriori cstimation techniques [7]. Thus, they represent optimal-control strategies which
attempt to configure the mesh to optimize the computational process. Such stratcgies have




proved to be effective for several classes of problems, including problems in gas dynamics
modeled by the Euler equations [!] and pioblems in compressible and incompressible flow

(e.g., [7D).

For time-dependent problems, however, the use of high-order spatial approximations
requires the use of a balanced temporal approximations that is high order as well.The
search for robust high-order schemes that function efficiently on spatially-nonuniform
meshes has been an elusive one, and few of the traditional schemes of high order (e.g.,
implicit Runge-Kutta methods) have proven to be effective for these types of

approximations [9].

The so-called Taylor-Galerkin schemes represent generalizations of the Lax-Wendroff
algorithm and have been used effectively for producing second- and third-order temporal
approximations [5, 3]. However, no procedures for extending these technigues to temporal

approximations of arbitrarv order appear to be available.

In the present work, we present a new family of stable high order Taylor Galerkin
(TG) methods for the numerical solutions of second-order hyperbolic systems. It is shown
that for second order systems, a multi-stage process can be used that produces schemes of
order 2s for s-stages, each of which involves the solution of a second-order system of
elliptic equations. A detailed stability analysis is provided for the case of linear systems

which establishes choices of parameters that result in unconditionally stable schemes.

An error estimation procedure 1s also presented which leads to estimates of both the
spatial and temporal approximation error. In addition, an adaptive algorithm is developed
which employs an Ap-adaptive finite element method for controlling the spatial errors.

For focus, applications to lincar ¢lastodynamics problems in two space dimensions
are described. The results of numerical experimnts on representative two-dimensional
stress wave propagation probler. © are also given. The results indicate that the algorithms
are capable of delivering high accuracy on meshes with very high order spatial
approximations. Very little oscilations of solutions in the vicinity of wave fronts is

observed, despite the very high-order approximations and minimal numerical dissipation.




2. Model 2nd order Hyperbolic System: Equations
of Linear Elastodynamics

As a starting point , we consider equations of linear elasticity in the following form:

where :

divT(u) + pob = pydu

!

T(u) = 2ue(u) + ATr(el in Q (2.1)

28(u) = Vu + Vul

Qis a domain in RV, N=2,3

i =

T(u)
&(u) =
b(x,1) =
Po =
u, A

i

u(x, t) is the displacement vector at particle x € Q attime 120
the stress tensor

the strain tensor

the body force field

mass density

Lamé coefficients

We reformulate equations (2.1) in terms of 1 only and arrive at

podiu — DTCDu = pyb (2.2)

where D is a generalized gradient operator :




(2.3)
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and C is a 6 x 6 symmetric positive definite matrix of elastic constants :
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For isotropic material elasticities Cjjg are given in term of Lamé constants A and 4 by

Ciju = 65 0y A + u( 6 Sy + 8y ) (2.4)

Equations (2.2) are to be solved in a domain QC RN, N = 2, 3. Typically, two particular

cases are of interest;

e interior problems when € is bounded
e exterior problems when €2 is a complement of a bounded set

The initial boundary value problem is further specified by introducing boundary
conditions. We consider the following kinds of boundary conditions:
1. Kinematic boundary condition

on I’ (2.5)

u

>

=

wherc % is a prescribed displacement vector on the I', — part of the boundary .

2. Traction boundary condition




T(u)*n=t on T,

(2.6)

where n is the unit outward normal to the boundary and ¢ is a prescribed traction on the T,
— part of the boundary (oQ=T_ u I, ,I, NI, =0).
The initial boundary value problem is completed by specifying initial conditions of the

form

u =uyand du =v; att =0 (2.7)

In the case of homogeneous boundary conditions, the problem can be cast into the
Hilbert space formulation as follows (see [4} for a detailed discussion).

We introduce

e The Hilbert space
H o= (L)

(2.8)
(u,v)y = (u,Mv)(Lz)N
with the weighting matrix M = (my, )
my = Pely (2.9)
e Operator &: H > D(&— H
def
u = -M'D'CDu (2.10)
where D( &) is the domain of & defined as
D(8) = {ue HYQ) | DCDu ¢ H) (2.14)
for the Dirichlet boundary value problem, and
D(R) = {ue Q) | CDu € DYQ)) (2.15)




for the Neurnann boundary value problem, where

Dy@) = { ue LX) | 3w e HQ), Vv e H\Q), (u, Dv) 2 = (w.¥) 2V }
(2.16)

and M = N(N+1)/2 . Note that the boundary condition on u is satisfied in the sense of the
trace theorem, whereas the boundary condition on ¢ is interpreted in the sense of the
generalized Green’s formula. For these reasons, the displacement boundary condition is
classified as the Dirichlet boundary condition and the wraction boundary condition as the
Neumann boundary condition for operator &,

Within the Hilbert space formalism, the initial boundary value problem of linear
elasticity can be reinterpreted as an abstract 2nd order Cauchy problem :

2
d—”-i-ﬂu:O

dr? >0
(2.17)
u = u,, j—;‘ = ¥, t=0
An H — valued function of time & = u(r)
[0, 0)3r — u()e U (2.18)
is called a weak solution of (2.17) if :
(i) ugand v, satisfy regularity assumption
ug.vog € H (2.19)
(ii) u(¢) satisfies regularity assumption
ue C([0, o); H) (2.20)

(iii) u(t) satisfies (2.21)

J’: JQ W (D, + o Jdcd + (g ©00,-)) 2




(2.21)
= (n ®0,)) 27 =0

for every test function
®e Cy(R; D(B))NCHR; 1) (2.22)
Notice that this definition admits, in particular, solutions in the d'Alembert sense.

We record now some fundamental results concerning operator & and the existence and
uniqueness of weak solutions u. We restrict ourselves to the case of a bounded domain 2.

1. Operator &is self-adjoint.
2. Operator {172 exists,

3. The spectrum of &, of &), consists of eigenvalues only. For the Dirichlet problem all
the eigenvalues are positive

o(q) = {col,coz, o)

(2.22)
0<CUISCOZS...SG)"—"—’OO
and for the Neumann problem the eigenvalues are non-negative
o) = {o, 0, o, .}
(2.23)

0=co0<co1SQ)ZS...SQ),l — oo

All eigenvalues are of finite multiplicity and corresponding eigenspaces {u,} are

orthogonal.

4. For the Neumann problem, the eigenspace corresponding to zero eigenvalue, i.e., the
null space of operator &, is spanned by constant vectors and by

0 X3 X2
X3 0 -X1 (2.24)
-Xq -X1 0




5. Operator & admits a clasical spectral decomposition

q=3" wdr, (2.25)
1=y a, (2.26)

where 4P, is the orthogonal projection on the eigenspace {un} corresponding to @,
dap,(-) = (,u)u, (2.27)
and ng = 1, O for the Dirichlet and Neumann problems, respectively.

5. A weak solution u exists and is unique. Moreover, it is of the form

u(t) = cos (8121)u, — F1725in (112 v, (2.28)

6. If the initial condition functions u, and v, satisfy an additional regularity assumption
uy,€ D(J2) voe H (2.29)

and the solution # € C'([0, eo) ; H) N C([0, o) ; D(&172) ), then the weak solution is

also a solution with finite energy:

EC) = bu Wy + 19201, (2.30)




3 High-Order Taylor-Galerkin Methods

Given a bounded domain Q in RY , ¥ = 2, 3, we consider a system of conservation

laws of the form

u,+ FVu) , = 0 xeQ >0 (3.1
k=1,..,N

where u = u(x, t) is a column vector of M unknowns, F* k= 1, ...,V are vector-valued
functions of Vu, commas denote the differentiation with respect to time ¢ and spatial
variables x, and the usual summation convention holds.

This system of equations is accompanied by an initial condition,

u(x, 0)= uy(x), u (x, 0)= vy(x) xe Q) (3.2)

and by appropriate boundary conditions.
By introducing velocity v = u , as an auxiliary variable, equations (3.1) can be

converted into the following first order system (in time):

V,‘

+ F¥Vu), = 0
x€) (>0 (3.3)

U,+ AU = 0 t>0
(3.4)
U =1U, t=0
where
def 0 Fk( V('))k
A = (3.5)
-1 0




U is a group variable, U = (
u

v
0
) , and U, specifies initial conditions, Uy = [ )

3.1 Taylor-Galerkin Schemes for Nonlinear Systems

Given the solution U" = U{t,) at time ¢, = nAt, we seek the next time step solution
U= U, + A in the following form

Zl - lAIz Zl.lt = " 4+ LlloAt U!: + VoAt 2Un”

Z, - At Zyy,

]

UM+ lyght U; + VoAt 2Uf‘”

+ unbdtZy;  + vubdt2Ziy

(3.6)

Zs - M2 Ziy = Ut + ugAr U‘; + VAt ZUT::
+ UM Zyy  + Vs AL2Z g
+ ..
L + U5 518 Zs. ot Vs 2ZS-1,H

where

Z, = Ult,+cAn,i=1,2,..,5- 1, are intermediate solutions called “internal

approximations”
Zy =U(t + A1) = Un*1 s the next time step solution (i.e., c,=1)

Hijs Vijs Mg » Vipoc; € R i=1,2, .5 3/ =12,.,i -1

10




A€ R, is a stability parameter

5 = number of stages

Coefficients Hij» Vij» Higs Vig» €;» are to be chosen so as to obtain the highest possible

order of accuracy, subject to stability or other constraints. A free parameter A is to be

chosen from stability considerations.

It is convenient to rewrite (3.6) in the following compact form:

\z, / \Zeus /

where
v.u € R  x e RS

(1 00000\
v,y A 00 0 0
v3lv321000

v =
\V.n Vo2 Vs3"’ss—1l/
(0 0O 00 9 O\
4, 0 00 0 0
Hoy 'y 00 0 0
m e 3y M3

\“sl l‘sz Hey * *u.vx-l 0)

(Z‘l\ YAWT, VAN
z, (Zz,u \ (22,: \ un
- M2 ® 0 |-au® T |=xe| U (3.7)
) Ar? U':’”
\z, /

c = (Cl % Cs)

(3.8)

(1 Hyo Vi \
1 150 vy

I 439 V30

\l Hep Vi )

11




Matrices v, i and xtogether with vector ¢ completely characterize difference scheme (3.6).

A distinct feature of (3.6) is that coefficient matrices v and i are lower triangular
matrices which makes the resulting scheme semi-implicit (i.e, to compute Z; it is necessary
to know Z;.1, Z;.2, ..., Zy, but it is not necessary to now Z;,1). Moreover, all diagonal
elements of vare equal (v;; =4, i=1, 2, ..., s) and so are those of p (;; =0, i=l, 2, ...,
s). This makes the operator defining the left-hand side of each stage of (3.6) identical for
linear (or linearized) problems, and, hence, significantly reduces the cost of the method. A
particular choice of zero diagonal elements of pt is made with an eye on a well-posedness of
a typical one stage problem and a possible splitting of the operator defining the left hand
side of each stage.

To make the i-th stage solution Z; m-th order accurate, it is necessary to satisfy the
order conditions for Z; and to make the previus stage solutions Z;.1, Z;.2, ..., Z, to be at
least of the order m-1. (Otherwise, some coefficicnts have to be set to zero, e.g., if Z;.1 is
of the order m-2, then, necessarily y; ;.4 = 0). The order conditions for Z; are obtained by
expanding it in Taylor series at U” :

U™ + O(AY  (3.9)

Zi = U+ (c;00U" + L, 8020 + ..+ L canm -2
FRgT ‘ 2

plugging (3.9) into the left-hand side of the i-th stage equation

- 2:1 (ﬂijAt Ziy + vijArzzj,u) = U" + kpit U"" + K,-3Ar2U’,'“ (3.10)

and equating coefficients of powers of Az to zero. This leads to the following system of

nonlinear algebraic equations

LN ) s k2 #50,{=1
- C ”U k(k-1) Y iy € Vi = J2v0,i=2 (3.11)
0. otherwise

Equations (3.11} are referred to herein as the order conditions.
We now proceed to derive coefficients for some particular schemes. In the sequel we
adopt the following notation: TG(s, m) = s5-stage m-th order scheme.




2- hem f order 4 (TG(2.4

We makz Z; and Z; to be O(AR) and O(AY, respectively, which leads to the following
system of equations:

Hio=c)
2vip=c>-24
6l=cf
Mo + p21 =1

2(va0 + v21) + 2un1cy = 1- 24
6vaict + 34t ¢k = 1- 61
121;»'21(312 + dun c? =1-121

The solution of (3.12) reads:

4]
Vio

H2l

Vai

Ha0

V20

o = (62

24
1-64 1

61 2
1-124

!
61 3
1-61 1

+

61 2

1-122
(64)372
1-124
(61)1[2
1-124
(62)372
1 1-122
4 62

B

- A+

1
2

(3.12)

(3.13)

1-64
(61)”2

2
3

A different 4th order scheme can be obtained by discarding the 3rd equation of (3.12)
(i.e., making Z, to be only O(Af?) ) and by taking g5, = 0. The coefficients for this

scheme are given below

Cj

Vio

Hn

H

I

13




1 (1-64)2
. L ad-e4y 3.14
V21 3 ] - 122' ( )
by = 1
1 1-184
Vog = = [
20 6 1.122

s heme of order TG(3.5

We make Z,, Z; and Z3 to be O(AR), O(AA) and O(AD), respectively, which leads to the

foliowing system of equations:

Hio =10
2vip= C% -24
61:(:12

Hzo + H21 = C2

2(vao + Va1) + 2Mt2101 = €5 - 24

6va1c1 + 321 € = ¢ - 6Aca

12vel +4py) ¢} = ¢ - 12463 (3.15)
Hio + {3z = 1

2(vsg + Va1 + Vg +p3p) = 1-24

6(w31 +Wa202) + 332 C% =1- 64

12(v3; +vsacs) +4umcy =1 - 124

20(vs, +V32€g) + 5u37 cg =1-201

H21 =0

For stability purpose we require additionaly that
Via(vaivig - vaod) =0 (3.16)
A solution to (3.15) and (3.16) is given below:

o = (6A)72
Vio = 24

it

€1
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C2

H2)
V21
H20
Vo
H32

Va2
H3t

H3o
V30

- imbedd

30 =

¢ lag - 3G - 6Mqq - ]

;2 I}C; % clcg - l(3c§— 266 )]

Cy - H2)

%C% - A - va - g (3.17)
(66‘% - 4cg )-l

0

0

é -4 - %#326‘%

1 -

% -4 - v - g n

heme of order 4 (TG(3.4

To allow for an error control, we construct a method in which a 1-stage 2nd order

scheme is imbedded in a 2-stage 3rd order scheme which, in turn, is imbedded in a 3-stage
41h order scheme. (We symbolically write TG(1, 2) “C” TG(2, 3) “<” TG(3, 4) ).
Toward this end, we make Z,, Z, and Z3 to be O(Ar?), O(Ar) and O(AFY), respectively,
and we set ¢y = ¢z = 1. Thus, each stage is an approximation to the solution U at time 7, +

At and the difference [|Z; - Zj.1]| defines a relative error for Z;.;. Resulting order

conditions are listed below:

o =1
2vig=1- 24
Hzo + 21 =1

2vao + Vo) + 21y = 1- 24

6v) + 3y = 1- 64

H3o + t3z =1 3.18)
2(vag + V31 + V32 +u3) = 1- 22

6(vq; +vi2c2) + 33y = 1-64

12(vay +v3) +4u3; =1-124

3 =0

15




For stability purpose we require additionaly that

Vvaivio - Vool =0
vaa(Vaitieo - M21Vio - H204) =0 (3.19)

A solution to (3.18) and (3.19) is given below:

Hio = ¢ =1
Vigp = ';'-/1
(5] = 1
| 1
3 GG +A)
Y0 = 4 L,
5 -
1
~ 3 l(-ﬁ'l'l)
Vai = g P
5 -
AG-L +2)
pn = 3 -24 -2 —2 (3.20)
= - A
8
A(-E+ + 1)
Ho = —%+2/l+% Ilg
= - A
¥
Hxz = %
vip = 0
Hun = 0
Vi1 = —:12""/1
o = 0
Hio = le_ |

Next, using the original equations (3.1) - (3.5), we calculare the time derivatives in
terms of spatial derivatives as follows:

U, = -AU

(3.21)
FX( Vu)‘k

1l

16




v, = - (AU )J

(3.22)
(R"’(Vu)v‘, ) &

F"(Vu)'k

k
where R¥ = g%? are the Jacobian matrices corresponding to fluxes F¥. In deriving (2.22)

we used the following relations:

4 "- (Fk( Vu)'k )';

Wt

- (FVu), ),
(3.23)

Fk
- (g;'; u )_k

1

- ( Rk’( Vu) Vi ),k

Also, it is important to notice that U ,, can be expressed in terms of spatial derivatives of u

and v of the order at most 2, which can be effectively handeled by C® continuous finite
clements.
Next, replacing the time derivatives in (3.7) by formulas (3.21) and (3.22), and

Vi
ingZ. =
denoting Z; (u-

3

pﬂ
} and U" = ( ) J we arrive at the following system of equations
u

[ v - Z}T:] (,uijAf [—Fk( Vuj)'k ]+ VijAtz [-( R“(Vuj) Vj.l)’k] )

= v+ xpAt [-FX Vuy , 1 + k3AC[—( R¥(Vu™) Vi), ]
(3.24)
u; - Z‘ll (p,-jA: [v; | + vyAR[-FX(Vu;), 1)

= u'+ xpac[vr] + kpAl[-FKVur ), |

i=1,2,..,5%

where the indices i and y are used to denote a particular stage, the indices & and / rcfere to
the axis of a Cartesian coordinate system, comma denotes partial differentiation, and "
summation convention for £ and / holds.

17




Wy

Finally, multiplying (3.13) by vector-valued test function W = ( ), integrating

Wy

over £ and integrating by parts, we arrive at the variational formulation of the form:

[~ Find v; andu;,i=1,2, ..., s, such that

J‘ “’I v, dx
Q

- Z;Ll JTHALY; [ J w'{,kF"(Vuj)dx -—J WT: F"(Vuj)nkds]
Q L6
- Y visa | .[ W, (RM(Vuj) vjp) dx ‘j wy (RM(Vuj) vjs)ng ds ]
Q o
T n
= I w. vl dx
Q v
- K2t [ J‘ w:,k F4(Vu™) dx —j WI FX(Vu™ny a’s]
Q o
- xpa | j wh  (RM(Vu"y v ) dx —J wi ( RM(Vumy vy Iy ds ]
Q7 o
(3.25)

j “’1; u; dx
Q

T
- 2;.;1 it Inwuvj dx

- ELI v,-jAtz [ J.sz'k FX Vuj Ydx — LQ WT‘ Fk(V"j ny ds]

Jwiw

= w udx

Q U

- K‘,-zAtJ‘WZV"dx
Q

o A g2 T pkp,n T pkeo,.n

- Ki3At [IwukF(Vlt)dx —J‘ qu(Vu )nkds]

Q ) a2

for all admissible test functions wy and wy, .

where n = (n}) 1s the unit outward normal. Weak form (3.25) is the basis for FE

approximations.
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3.2 Taylor-Galerkin Schemes for Linear Systems

We now give an alternative derivation of TG schemes which is valid for linear
systems of conservation laws with constant coefficients addmaiting spectral decomposition
of underlying spatial operator.

Given the solution U" = U(t,) at time £, = nAt, we seek the next time step solution
U™! = U(t, + At in the following form

[(7- Aa2Pror2) ... (I - 2A2%902) |un+!
l |

5 times

= [1+ 2, (D)A1x + (A2 + ... + x, (AMBPSS925 | U + O(Ar+Y)  (3.26)
] 2 2
where

A eR, j=12 .2
2 =0, j=m+1,m+2, .25
Ae R,

s = number of stages
m < 2s is the order of the highest derivative at the right-hand-side of (3.26).

Coefficients xj()u) are 1o be chosen so as to obtain the highest possible order of accuracy,
subject to stability or other constraints. As previously, a free parameter A is to be chosen

from stability considerations.

The coefficients x,(1) are determined by expanding U™ ! at the left-hand side of (3.26)
in a Taylor series about U” and equating coefficients of powers of At to zero. Accordingly,
identity (3.27)

[(7- 282002 ... (1 - Aal2P a1 +Ad/or + 21!0992/8:2 +.. a‘;)?A:?-*yS/aﬂs Jun
| |

s times——————
= [T+ 2 (DA + yDARFEIN + ... + 2, (MDAF PN U + Oar+)
(3.27)

leads to the following relations for (1)

149




=1

wh= k- ()

2= - ()2

24(A) = ;, 2,( )A + (2) A2

=5 -5(7) 1+ (;) # (3.28)
(4 = é ) 3(1) = 5(2) A2 (;) 2
rW=g3-5(D) A+ 5 ()% () #

etc.

where (i) k'( k)' 7.7y is the Newton binominal symbol.

Constructed in this way, an s-stage scheme is of the order m < 2s. Furthermore, for
particular values of A4 it will be of the order m+1, and, in fact, this is the highest attainable

order of accuracy. Typically we choose m = 2s, i.e., an s-stage scheme of the order 2s (or
25 + 1). On the other hand, the choice m < 25, when some of the coefficients y; are a

priori specified to be zero, may be advantageous from the stability point of view, e.g., by
setting x, = ¥,..; =0, the resulting s-stage scheme will be of the order 2s - 2 (or, at most

25 - 1).

Remark: the scheme with m <25 ,e.g., m = 25 - 1, where X2 = 0, should not be
confused with the scheme with m =25 and 4 being so chosen that 2, = 0. The former is
of the order 2s5 - 1 while the letter is of the order 2s. It is only for this panticular value of A

that L.*h schemes are identical. |

EXAMPLE 3.1

The 3-stage scheme of the order 6 is of the form:

[1- 2a202Pun+t = [1
- + At dior

+ (%- 34) A2 For
+ (é -31) AB /a3

20




+ (55 - 22 +32) ad oot

+ (33 - 37 +322) a8 Fad
+ (5h - 3h + 322-23) At Fjars Jun (3.29)

with the local truncation error E, satisfies

[1- 2823102 E, = [(s - 54 + 342- ) a7 3100 Jur+0(a8®) (3.30)

[ e,(A) [

Setting A = 1.41218087134444 yields y¢ = 0 but the resulting scheme is still of the order 6.
By choosing A to be a zero of (1) (e.g., A = 0.444797521031781), formula (3.29) has
order 7.

The 3-stage scheme of the 4th order is of the form:

[1-2a2®0n ) un = [1
At /ot
+ (% -31) A2 Pon?

+

+ (§-30) 80 P
+ (% - 22 +322) ar Mo Jum (3.31)

In order to implement formula (3.27) efficiently, it is necessary to factorize the right-
hand-side operator into the product of “quadratics”™ as follows:

(1 + 2, (D)A13/0t + 2 MARPIIHE + ...+, (ARSI )
(3.32)
= (1 + 1 D1310 + vy DALFIA?) .. (1 + DAk + v(WDEFIA)

! s times !

Indentity (3.32) leads to the following system of nonlinear algebraic equations for H; and Vi,

j=1,2,..,5:

21




Myt + o= 1
Vit Vy b Vo iy o Y = 2(A)

(3.33)
Vg ¥, = 2

Factorization (3.33) exists and is unique. The coefficients of the factorization can be found
numerically for a given value of parameter A and are given in an Appendix.

Next, we use relations (3.21) and (3.22) to express time denvatives in term of spatial
derivatives. For lineur systems with constant coefficients, these equations take a particulary

simple form:

U, ~ AU

U = A (3.34)

g

]

Replacing the time derivatives in the left-hand side of (3.27) and the right-hand side of
(3.29) by formulas (3.34) and introducing auxiliary stages ¥, we arrive at the following

system of equations

—

Y, - AAP2A%Y | = UM - At AU + v APAU"
Y,- AAA%Y, =Y, - A1 AY |+ v,APA%Y

stimes (3.35)

UV AAPATUMY =Y - WALAY |+ VARAYY |

-

In deriving (3.35) we used the fact that the operators [/ - 1ar*42) " and [1 - 1AL A+
vjArzAz] commute. (In general, [f{A)og(A)|(U)= Z:nﬁf(wn)g(wn)dPn(U) =
[2(A)ofTA)](U), where f{A) is a bounded operator, @, are the eigenvalues of A and dP,

are the associated eigenprojections; see also Section 2).
As can be seen, (3.35) is a sequence of s linear elliptic-like PDE’s with the same left-
hund side operator. Moreover, since operator A2 has zero off-diagonal terms :




—Fk( V(')).k 0
A = (3.36)
0 —Fk( V('))'k

a typical “one stage problem” is splitted into v-equations and u-equations, which can be
solved independently and in parallel {the presence of A at the left-hand side of (3.35)
would have destroyed this property). In addition, the diagonal terms of A% are identical
which means that the operators defining the left-hand side of each stage of (3.35) are
tdentical for both v- and u-equations (and for all stages).

Finally, multiplying (3.35) by vector-valued test function W, integrating over  and
integrating by parts, and denoting ¥, = U" and Y, = U™!, we arrive at the variational

formulation of the form:

p—

Given Y, e X

FindY; = C‘i )e X,i=1,2,..,s5, suchthat
i
a(wy,v) — AAR[b(wy,v) - bwy,v)]

= a(wy.,v. ) + wAb(wy, u ) - bpwy,u; )]
+ V‘-Afz[b(wv N Pi-l) - br(wv ’ ";‘_])]

(3.37)
a("’u 1 u,’) = Mtz[b(wu ’ ul) - br(Wu ’ u;’)]
= a(wy,u;)) — K Atalwy,v. )
+ VAR [b(wy ,u; ) — bwa , u; )
L
for all admissible test functions W = ( )e X
L
Here :
alw,u) = wlu dx
Q
©obw,w) = | wl RMudx (3.38)
Q
b{w,u) = win, R¥u ds

23




. JF* . . .
Jacobian fluxes R¥ = ou are now constant rnatrices, and n, is the unit outward normal.

Replacing X in (3.37) with a finite dimensional subspace X, of X , we arrive at the
fully discretized problem.

" Given Y, o€ X,
. Vi
Find Yh.i = (

)e X, =1, 2, ..., 5, such that
Uy

a(wy,v,;) = AAb(wy,v, ) ~ bwy,v, ;)]
= a(wy,vyq) + HAdb(wy, uy;0) = bwy,u, ;)]
+ V;A2[b(wy, v, i0) — bp(wy, v, )]
(3.39)
a(wy, uy ;) ~ ME[b(wy,u,;) — bwy,u,;)]
= alwy, ;) = Ara(wy, v, )
+ v, Al[b(wy uy ) = b(wy , 4y )]

w
for all admissible test functions W = [ ’ )e X,
Wau

Formula (3.39) is referred to as an s-stage, high-order Taylor-Galerkin (TG) method.

4 A Linear Stability Analysis

We shall now restrict ouerselves to the special case of the eqautions of linear
elastodynamics. Thus, we consider the problem of the form

2
%+ Su =0
(4.1)
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where the operator & is defined by eqns (2.10) - (2.16). It is convenient to convert (4.1)
into the 1st order system of the following form

U,+ iAU =0 t>0
(4.2)
U = U, t=20
where
def () g’
AU =—| U 4.3
—I 0

U is a group variable, U = (v

u u,

Yo
} , U, specifies initial conditions, Uy = [ J, and i is
the imaginary unit. The form of (4.3) is similar to (3.4) except the multiplier i, which is

introduced to make the operator A self-adjoint.

The multi-stage Taylor-Galerkin method for solving {4.2) reduces 1o a sequence of s
linear variational boundary-value problems of the form

Given Ue X

Find ¥, Y, ... Y , UM e X such that

s-11

AW, Y))+AAB(W, Y))
= A(W, U™ + u,AtC(W, U™y - v\ Ar2B(W, U™)

AW, Y,) + AAr’B(W, Y,)
=AW, Y )+ 1I,AIC(W, Y ) - v,ArPB(W, Y )
' s umes (4.4)

AW, U + AA2B(W, U )
=AW, Y_ D+ uAMCW, Y ) - VAZB(W, Y, )

for all admissible test functions We X
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where X = X, x X, = H x D(8), the bilinear (sesqulinear) forms A, B and C are defined

by

AsBsC:(XVXXH)x(XVXXH)_"‘)C’

AW, U)

B(W,U)

C(W, U)

i

(U, Wlyxp
(AU, AWy . 4

and the inner product (¢, -)y . g is defined by

w, W)H x H

Each stage of (4.4) defines a linear operator Tj fromX, =X Rg(Tj) into itself;

([v, u), Wy, wuld gy « 11

(v, Wv)y + (u, Wu)H

Tj: Xl — X,

and the composition

T =T oT

F

10 T OTl

(4.5)

(4.6)

(4.7)

(4.8)

defines a transient operator T taking an approximate solution U” at time level ¢ into U"*]

T:X1 ——a»X]

Urn»l =TU"

It should be noted that bilinear forms forms A and B are symmetric (Hermitian)

AW, U) =AU, W)

B(wW,U) =BWU, W)

26
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and bilinear form C is skew-symmetric (skew-Hermitian)

cC(w, U

= —i(U,AW) gy @.11)

= (U, AW) o u

|

= U, w)

Moreover, the bilinear form appearing at the left-hand side of (4.4) satisfies the inf-sup
stability condition

sup laow, Uy + 2828w, U)| 2 (U, U)yy» yy + AMPAUADYy . p (412)

and defines a natural, energy norm for problem (4.4). Condition (4.12) implies also that
the variational problem (4.4) posesses a unique solution U”*! and guarantees the usual
convergence properties for variational boundary-value problems.

To investigate stability properties of (4.4), we need to estimate the eigenvalues of
transient operator T, or, equivalently, the eigenvalues of the the following eigenproblem

Find an eigenpair (2,0# U € X )
and ¥, Y,, .. Y_,€ X such that

AW, Y)) + AAPB(W, Y))
=AW, U) + 1, 0:1C(W, U) - v, Al2B(W, U)

AW, Y,) + AAZB(W, Y ))
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=A(W, Yl) + uzAtC(W, Y1) - VZAtzB(W, Yl) (4.13)
s times

elaw, vy +ra2Bw, 0]
=AW, Y, )+ pAIC(W, Y ) - vACZB(W, Y )

for all admissible test functions We X

b

Toward this end we notice that the underlying operator A is self-adjoint (in the complex

sense) and has a pure point spectrum

oA) = {0,0,,0,,0,,0,,..}

(4.14)
Oc<wycw,€..80, — o, 0, € R,
with corresponding orthonormal eigenfunctions (U} such that
A=) wd, (4.15)
I=dpy+ Y  db, (4.16)
AU, UY= &, 4.17)

where dP (1) = A(-, U)U, , dP is the projector onto N(A), @, =-, and U =-U, .

By taking

U = dPy(U) + Z:w dp (U) (4.18)

Z, = dPy(Z) + Y dP(Z) (4.19)
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W=U ¢ NA) (4.20
eigenproblem (4.13) can be reduced to the following form:

Find an eigenpair (2,02 U € X )
and Y, Y,, .., Y ;e D(A) such that

AU, Y+ 2020 AU, Y)
= AU, , U) - ip Ao AU, U) - vAPRw: AU, , U)

AW, Y,) + AARGE AU, Yy)
=AW, Y, - ipAw, AU, Y ) - ARt AU, Y ) 4.21)
. stimes

Q, [aw,, vy + 18202 AU, , U))
=AU, Y, ) -ipdiw AU Y ) - vARol AU, LY, )

for UneX

e

From (4.21), we can obtain £2_,

- v(DARW, - ip ()t e,

1 + Aol

2, =11,

(4.22)

and its modulus

(1-vhare)? + (u)are, )’
1+ AA:'*’co,zI )2

12, =TT,

(4.23)

By choosing U = W € N(A) it is easily seen that the corresponding eigenvalue of T, €,

ts equal to unity:
2 =1 (4.24)
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Similarly, the eigenvalues of the j-th stage eigenvalue problem :

0#Z € X ) such that

n?

Find an eigenpair (£2,

aQ [aw, 2) +1a2B(W, Z)] (4.25)
=AW, Z) + LAIC(W, Z) - vjAﬂB(w, Z)

for all admissible test functions We X

-

read
202 _
] - vj(A)At w, - zuﬁ»)At ,

fn 1+ 1Ar2a)i
(4.26)
'Qj.o =1
and, therefore (4.22) and (4.24) can be written as
S ——
QH = Hj:] Qj,n n= 0$ 1’ e (427)

In other words, the eigenvalues of the transient operator T' are products of the eigenvalues
of the component operators Tj .

To show unconditional stability of TG methods, we need to show existence of a A such

that

[£21<1, n=1,2, ..
(4.28)
Vare R,

Thus, in order to find a A producing unconditionally stable Taylor-Galerkin method, we

neced 10 solve the following problem:

Find A €. X, such that

(1 - v(DARe)? + (M)At o, )?
(1 + 220> )?

1A

I
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My +Hy+ o+ =1
Vi+Vy b R Ve U R gl = C(A)

(4.29)

ViV, Vg = 6 (4)

for all A6 e R,

Unfortunately, (4.29) can be solved analytically for s = 1 only. In this case, it reduces to
finding A such that

(1- (15- VAR ) + AFW?
(1 + a2’ )?

IA

(4,30)

which is satisfied for all Ar provided A > L5 (This result was proven in an alternative way
by Demkowicz ef al. in [1].) For s > 1 we compute K and Vi for a given A and verify
stability criterion (4.30). The results of numerical computation of the ranges of A which
satisfy (4.29) are summarized in Tables 4.1 and 4.2. In addition, Figs. 1-7 show the
variation of [§2 | as a function of A2e’ for A's lying at the boundary of stability regions

listed in Tables 4.1 and 4.2.

Table 4,1
5 m A
1 2 [ 4 , 00)
2 4 10.47048, oo)
3 6 [0.695, c0)
4 3 [0.91943, o)
5 10 [1.15, oo)

31




Table 4.2

5 m A

3 4 [0.22, o0)
6 [0.29, oo)

5 8 [0.38, o0)

It is interesting to check whether the s-stage methods of order 25+1, 1.¢., the methods of
the highest attainable order of accuracy, are unconditionally stable. Table 4.3 gives the
largest values of A producing s-stage methods of the order 2s+1. Unfortunately, all those
A’s are not in the range of unconditional stability, and, therefore, the s-stage (2s5+1)th order
methods can be at most conditionally stable.

Table 4.3

s m A

1
1 2 6

1 1 21

2 4 -6' + -2' ﬁ
3 0.444797521031781
4 8 0.5832607710(0355
5 10 0.721627161040466

Next we check stability properties of the s-stage 2s-th order methods with A so chosen that
coefficient ¢, = 0. Table 4.4 lists the smallest of such A’s and Figs. 8 - 11 show the

. - . . . 2
corresponding variations of eigenvalues |£2 | as a function of A, . As expected, all

those A’s produce unconditionally stable Taylor-Galerkin methods.

Table 4.4
5 m A
|
1 2 5
2 4 0.956435464587639
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3 6 1.41218087134444
8 1.86773692752801
5 10 2.32321418507049

Moreover, this class of methods has the property that the eigenvalues €2 tend to zero as As
goes to infinity

lim [Q=0 (4.31)

At o0
This is easily seen, since from (4.23) we have

v.v, ..V
lim l‘in - _I_.L_2_s._5!
At - o0 A

(4.32)
and one of the v; is equal to zero. In fact, all the methods with m < 25 will have property
(4.32).

Equation (4.32) suggests also a criterion of selection of A for methods with m = 2s.
Namely, of all the A’s guaranteeing unconditional stability we choose the one for which
[v, vy .., [/AS is the largest, i.e., we choose the A which will produce the method with
least possible numerical dissipation. These optimal values of A as well as corresponding
asymptotic values of J€2 | are given in Table 4.5. As can be seen, all the methods but s = 1
are dissipative. Note also that the optimal A’s lie at the boundary of stability regions listed
in Table 4.1.

Table 4.5
5 m A [vyv, v /28
1
1 2 n 1
2 4 0.47048 0.937
3 6 0.695 0.904
4 8 0.91943 0.887
5 10 1.15 0.868
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Figure 12 illustrates the decomposition of the eigenvalue of the wansient operator T into
the product of the eigenvalues of the component operators T; for the 4-stage 8th order TG

method (compare eqn (4.27)). As can be seen, the moduli of eigenvalues of T;are bounded
but they are not necessarilly less than unity for all the component operators. (This property
also holds for other unconditionally stable schemes). In general we have

1, 1<C; . j=12 .5 (4.33)

where

C; = esssup [92,] (4.34)

j ! n
0<arw,<on

usually C; = max{1, |vj|/;t J.

Thusfar we investigated stability properties of TG methods for X, being infinite-
dimensional and we showed the existence of ranges of the stability parameter A for which

the spectral radius of T, /(T), is less than or eqal to unity. To show unconditional stability
of TG methods for finite dimensions, i.e., when T is restricted 10 X, (X, < X, dim X,

< oa), we will show that the spectral radius of T satisfies the following maximum principle:

sup B,(TU,TU) = r¥{T) (4.35)
vex, B, 0y ~ '
Uz0
where
B (U, U) = A(U,U) + AAB(U, U) (4.36)

is the bilinear form appearing at the left-hand side of (4.4), and

r(Ty = sup [Q | 4.37)
.Qmeo(n
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Indeed,

B,(U,U) =

=B,(aP,(U) + Z::m dP_(U) ,dPyU) + Z:w P (U) )

=B,(dPoU) + Y AW, U, .dPU) + Y. AU, UYU,)

= A(dPy(U), dP,(U) ) + A(Z:’:_m AU, U, , Z:w AU, U)U, )
+20ea(y " 0,AU. U,y " 0AWU,U),)

=A(dPy(U) , dPy(U) ) + Z:» uw, u)P(1 + 182w 2 ) (4.38)

and

B(TU,TU) =

=B (T(@Py(0) + Y.~ dP,(U)), T(@PyU) + 3. dP(U)))
=5(aPy(U) + Y QAW U, dPU)+ Y QAW U, )
=a(ar, ), dp)) + A3, 0,40, 00,, Y " 04w, U)U,)

sy 2,0A0,00,.Y " 00AU.U)U,)
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= A(dPy(U) , dPy(U) ) + z:m 12,12 lA(w, U )21 + 22w |2 )

< A(dPyU) , dPy() ) + supl 2 3

n=.

< max {1, sup|e2 |2} [A(dPO(U) ,dPy(U) ) + Ziw AW, U )1+ Aal|o |2 )]

= max{l.QoIz, supl.lez} B(U,U)

= rXT)B,(U, U)

Thus,
B(TU ,TU)

s : < AT

b A RN LR

U=0
Conversely,

B(TU,, TU ) B (ru ,TU)

2 = ! a i< Su 1
I-in Bl(Un‘Un) B UE.X[')l BI(U‘U)
U=0

from which (4.35) foliows.

Consider now the finite dimensional counterpart of eigenvalue problem (4.13):

Find an eigenpair (£2,. 02U, € X, )
and Z, .2, 5, ... 2, _‘_'Ie X, such that
AW, Z, )+ AAFB(W, Z, )
=AW, U+ AiIC(W, U, - v AB(W, U )

l6

2
_ A, v)P(1 + 28w )?)

(4.39)

(4.40)

(4.41)




AW,Z, ,) + AAPB(W, Z, ,)
=AW, Z, )+ U,M1CW, Z, ) - vAB(W,Z, ) (4.42)

s times
o, [aw, v, +2a2Bw, 0]
=AW,Z, ) +uAMCW,Z, ) -VAPBW,.Z, )

for all admissible test functions We X 4

Since
B.(TU,TU)
max|2 < Ssup 1
e K (7
U 20
B.(TU ,TU)
< sup —L 4.43
vex, 5. 0) @4
U =0
= ()

unconditional stability of the TG scheme for infinite dimensional levels (i.c., rA(T) <1V
Are R)) implies its unconditional stability at finite dimensional levels, independently of

the approximation used with respect to space variables (any finite element mesh).

5. Adaptivity (Linear Problems)
5.1 Error Estimation for High-Order TG Methods

As a starting point, we consider the estimation of the spatial approximation error
commited at a typical stage. The j-th stage problem reads
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p—

Given Zh_pj',e Xu» find Z

. : np:; € Xp, p such that

B,(W,Z ) = Lj(W, zh.p;j-l) (5.1)

h.pi

for all admissible test functions W e X, »

where

B (W, U) = A(W,U) + AA?B(W, U)

(5.2)
L(W.U) = AW, U) + AIC(W, U) - vjAﬂB(w, )

X4, © X dim X, | < oo and indices & and p refer to the use of arbitrary A-p finite

element meshes, with locally varying mesh size  and spectral order p.

Assuming that there is no error in Z, we consider the enriched space X, ,,,

pijle
corresponding to the same mesh but with local order of approximation uniformly increased
by one and we define the relative error as

m _

E;" =2y pj - Znpij EE)

where Z, ,.,.;is the enriched space solution.

We estimate ||Ef 2 £ using the element residual method in the form [5]
B (W, ) - L{W, »
"Efl)“F = sup ! 1 z_fup::) _L’J(‘L_z_h.jd_lll.
© O WeX, . W lg

= "Z},,pﬂ;j - Z},.p;j "E (5.4)

112

pS (Zx ”i'.j )
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where

® |}l is the global energy norm defined as

Wl = B,W, U)" (5.5)

L jis the element error indicator function evaluated as

Mej = Bi (¥ %,,-)”2 (5.6)

with B, , the element contribution to the (global) bilinear form B, and the ¢, . the

element indicator function which is the solution to the local problem

Find ¢, ; € X}, ,,,(K) such that
(5.7)
B, (W.9;) = Rj(W)V We X?l.p+I(K)

where R; is an appropriate residual corresponding to element K and b (K) is the

h, p+l
kernel of the A-p interpolation operator defined on the element enriched space
X h, p+l (K).

For all details we refer to {5].

Next we consider the error E}z)which is caused by the error in the previous stage

solution Z, pijol and enters (5.1) through the right-hand side. Formaily E}z) is computed

as
@) _
Ei" = Thperij B (5.8)
where T, ,.,.; is the operator taking the previous stage solution Z,, pel;j1 MOZ, oy
T prtzj s Xnpoy — Xp pi o
(5.9)
Zh_p+l'.j = Th.p-rl;j Zh,p+|;j-l
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and Ej.1 is the errorin Z,, PR

_ ) (1) (1)
E\=E{ + T, ,;1Ej3 + Ty p;j1°Thpa;j2Ejs

(5.10)
(1)
..+ Th_p+l;_,‘-1 = Th.p+l;j-2 0..0 Th.p+1:2El

Notice that E}_l is the accumulated error up to stage j-1,

We have the following estimate:

212 2
"Ef )"E = "T},. p+i;j l'}l"[;

IA

2 2
Ty, 12 I

B(TU,TU)

2
Sup BI(U, U) IIEj-lllE

Uexh,p+l
U =0

B(T.U,TU) )
sup BTHL T e
vex, B 0.0 jalle

U =0

1A

2
rz(Tj) "Ej.lllg

g I (5.11)

IA

where r(Tj) is the spectral radius of Tj and Cj are the constants defined by (4.34). In

deriving (5.11) we used the following maximum principle

B A(T.U ,T.U)
Sup 1 I !
vex, B,/WU.U)
U=0

= rXT) (5.12)

which can be proved in exactly the same way as the maximum principle (4.35).
Thus, the spatial approximation error accumulated up to the j-th stage is given by the
following recurrence relation
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1 2
IE Il < IEMIE + IEDI,

(5.13)
< NEPI; + G IIE, I,

By using (5.13) at each stage, we can estimate the spatial approximation error commited at

a typical time step U} , — Uyt . Accordingly,

P
1
”E_,"_g s ”E_E )"5 + C ”Es-lllg

|
E, Mz < IEX N + G E, i (5.14)

1
HE Nz = NESV I,
and, therefore,

IEG Il = IE ]I
i 5 1 1 1
$ G (G (Goy e G IELHE +1ES g )+ IS g )+ + N + B, g
(5.15)

where it is assumed that there is no error in the previous step solution U: " It can also be

n . . . . . a
shown that [[E || is a bound for the relative spatial approximation error commited at a

typical time step:
IEC N < NUp, - US g (5.16)
where
n+t  _ n
Uh-P - Th'pUhv.p
(5.17)
n+l _ n
Uh.p+l i Th.p+l Uh_p

and Th_ ’ and T are restrictions of transient opcrator T, eqn (4.6), 10 X %p and

h.p+l
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X respectively.

h p+t
To account for the total error commited at a typical time step, it is also necessary to
consider the temporal approximation error. We estimate the relative temporal approximation

error as follows:

IEZ Nz = WU - U3 g (5.18)

where U:"; is the solution obtained by using an s-stage m-th order TG scheme which is
referred to herein as the basic solution scheme and TJ:T; is the solution obtained by using
the (s+1)-stage (m+2)th order scheme (with the same stability parameter A and the same
time step At ) which is referred to as the auxiliary solution scheme. Notice that the
definition of auxiliary scheme is unique. Since the bilinear form defining the left-hand side
of the basic method is the same as that defining the left-hand side of the auxiliary method
(since A and Ar are unchanged), the computation of 52“’; and, hence, ||E':,||E is

economically feasible.

Thusfar we estimated the approximation error e liz commited at a typical time

step and consisting of spatial approximation error and temporal approximation error :

1.
WED" e = NED N, + IIET N, (5.19)

To obtain the error for the whole evolution process, it is necessary to consider the error
||E & llz which is introduced by the error in the previous time step solution U’}

Formally,

EP =T, E"! (5.20)

h, p+1

+1
-1. . . -1.
and E™" is the exrror in U » - (More precisly, E™ ! is the error accumulated

where Th'P_H 1s the transient operator taking the previous time step solution U:‘ ’

n+l

into Uh. el

up to the (n-1)th time step).

We have the following estimate:




2).n 2 -12
WED™ R = 1T, ,,, E™IIE
< N7y liZ NE™Z
B,((TU,TU) = .12
= Sup ] E (5.21)
U =z0
B (TU,TU) Al
< sup - E™|
vex, B.U.0U) =g
U =0

12
= r¥T) ||E" Iz

A

12
IE™IE

where it is assumed that /{T") £ 1.
Thus, the approximation error accumulated up to the n-th time step is given by the
following recurrence relation

1), 2),
WE™: < IEDM, + IED",

(5.22)
< IED?: + NE™

Inequality (5.22) provides a basis for the control of the quality of results for the whole
evolution problem.
5.2 Adaptive Strategy and Computational Considerations

We neglect the temporal approximation error (inasmuch as we use high-order

schcrres): we use a constant ume step Ar and employ a simple strategy based on

equidistribution of spatial approximatin crror for each time step. The equidistribution
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strategy means simply that a number of elements with the largest error indicators are
refined. The usc of a constant At is permissible because of the unconditional stability of TG

schemes.
Formally the algorithm is as follows:

Step 1  Read in data (geometry, initial conditions, etc.).
Specify time step Ar, number of time steps NSTEP and the target error for the

whole evolution problem 173, .

n+l

For each time step U:'p —_ Uh_p :

Step2  Specify the target error for ““‘one time step problem” 1, €.8., Nar = NSTEP

Step 3 Solve for U,’:*: » save the internal approximations Z,  .,j=1,2,...s-1. Usc a
direct solver or an iterative solver using U} » and the previous time step internal

approximations as starting vectors.

Error estimation
Step 5  Foreach element K determine error indicators 7, ; via (5.6)
Stcp 6  Determine the global error commited at this time step:

(1).n -~ n
WE" ™z = IIE Il
where IIE'; iz is estimated via inequality (5.15).

Stcp7  Check the error. If IIE(”‘" Iz < 7a:, then go to Step 13.

Step 8  For each element K determine error indicators for mesh refinements 7. Identify
the largest admissible error indicator 1,4 .

Step9  Create a list of elements such that 17, > 1744.
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Step 10 Check the number of elements ~n the list. If it is too small (zero in particular),
decrease 7,4 and retumn to Step 9.

Step 11 Refine elements K from the list created at Step 9.
Project U:.p , Zh_p;j‘j =1,2,..5s-1, and U‘;‘:}: onto enriched space.

Step 12 Solve for U:T: using iterative solver and coarse mesh solutions U,’: 27 Zh_ pij
j =1,2,..51, and U’,’L‘”; as starting vectors. Save the fine mesh solutions.

Set “fine” = “coarse” and return to Step 5.

Step 13 For each element L, determine error indicators for mesh unrefinements &,.
Identify the largest admissible error indicator ;4.

Step 14 Create a list of elements L such that

® 1, <0.017,
® L <bu

Step 15 Unrefine all elements L from the list created at Step 14.
Project U:_p ’Zh.p;j'-f =1,2,..5-1, and U’;:; onto unenriched space.

Step 16 Sct U’ o= U’;*Pl and go to Step 2.

The element indicator for mesh unrefinements &, is defined to be averaged “physical”
energy (cf. (2.30))

R TUASI
& = ST e (5.23)
meas({2;) )

with £; the element contribution to the global energy £ and meas({% ) the area of element L.

Element error indicators for mesh refinements 1, for typical time step are choscn in

such a way that
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172
n 2
ISl < (D e )
Accordingly, 7, are computed as:

n

I

2 2.2
nx.2 + C2nx.1
(1
+ 2GET, 5
for 2-stage scheme,

2 2.2 2,2 2
M3 + C3M ., + C3C3M,

=3
~
]

+ AGEY + GGEM)n, 4
2 1
+ 26CE", ,
for 3-stage scheme, and

2 2.2 2,.2.2 22,22
¥ Mg + CaTls + CiC3Ny o + CLCSCM,

n

- AGED + GOED + G CGE I,
+ 2CICE + CGGEY )
- 20GCE

for 4-stage scheme.

(5.24)

(5.25)

(5.26)

(5.27)

The solution strategy for the “one-stage problem” deserves special attention. Since the

formal operator equivalent to the bilinear form B, has zero off-diagonal terms, velocity

equations and displacement equations can be solved independently and in parallel (the

coupling between velocity and displacements is only through the right-hand side).
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Finally, we emphasize the need of using an iterative linear equation solver in the
adaptivity loop (cf. Step 12). Notice that the matrix defining the left-hand side of the
resulting algebraic problem is sy netric and positive definite which is the most popular
case in the theory of iterative solvers. Notice also that the total computational effort
involved in the adaptivity loop is governed by the total number of iterations required to
solve the resulting system of linear equations on different meshes rather that by the total

number of mesh adaptations.

6 Numerical Example

Stress wave propagation in an elastic panel with a cut-off (2D)

As an example we chose the problem of wave propagation in an elastic panel with a
cut-off (Fig.13). A plane progressive transient wave is normally incident on a traction-free
rectangular cut-off and gives rise to complicated pattern of stress field caused by the
interference of incident, reflected and diffracted waves, and by singularities at the comers.

The problem was solved for the following data:

® |amé coefficients, 4 =0.25Pa, A=0.5 Pa
® Mass density, p, = 1 kg/m3

® Initial conditions :

x-velocity, ve(x, y, 0) = fOO[H(x - 1) - H(x - 3)]

y-velocity, vy(x, y,0) =0 (6.1)

x-displacement, u,(x, y, 0) = F(x)

y-displacement, uy(x,y,0) = 0

where flx) =-1 + 32(3 -x)2- 256(3- - )4 and F(x) = anti-derivative of f{x).

The problem was solved by using a 2-stage 4th order Taylor-Galerkin method with
stability parameter A = (0.47125 and constant time step At = 0.0078125 5. No local p-
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refinements were used in this example, as the p capabilities of the code were used only to
specify an initial order of approximation (p = 4 in the example).

Fisure 14 shows the initial finite element mesh and Figs. 15 and 16 show the initial
condition functions in the form of 3D plots {x-velocity and x-displacement, respectively).
Figure 17 presents the adapted finite element mesh at time 7 = 0.25 s and Figs. 18 - 23
present the corresponding distributions of velocity components (v, and vy) and
displacements (#, and u,). Displacement vector, as the most interesting, is shown in the
form of both the 3D plots and contour maps; velocity components are presented in the form
of 3D plots only. As can be seen, a doubling of the amplitude of x-velocity occures at the
part of the left face of the cut-off which is in perfect agreement with the plane wave solution
(the wavefiel is locally plane at this region of space-time). Also, sharp gradients of vy and
uy in the vicinity of point A(x = 1.5 m, y = 0.5 m) can be noticed. Similarly, Fig. 24
presents the finite element mesh at time £ = 0.5 s and Figs. 25 - 30 present corresponding
distributions of vy, vy, Uy and u,,.

Figures 31 - 33 show the finite element mesh at time ¢ = (.75 s and Figs. 34 - 40
show the corresponding solution (v, Vy, i, and uy). Figure 32 presents a zoom of the
finite element mesh in the vicinity of corner A. A total number of 19 mesh refinements was
needed to capture the singularity at A, Thus, the CFL number, v:

X At pymax{[Ag x|, llx.yl}
b

vV = ma
K

(6.2)

is of the order of 103. This would place a severe limitation on the time-step size for any
conditionally stable scheme. Here Ag is the element size, px the corresponding order of
approximation, and Ag, x, Ag, y are the maximum values of eigenvalues for Jacobian
matrices R, Similarly, Fig. 33 presents a zoom of the finite element mesh in the vicinity
of point B{x = 1.75 m, y = 0.5 m).

Figures 40 - 42 show the distribution of the components of stress tensor T, Tyy and
Thy, in the form of 3D plots. A very strong singularity in stresses at the corner points A
and B are observed. Finally, Fig. 43 shows the history of the error bound (5.22) for the
whole evolution problem, and Fig. 44 shows the number of mesh adaptations as a function
of time.
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APPENDIX: Coefficients for TG Schemes

Listed in Table A1l are coefficients 75 and v; of factorization (3.32) for various schemes and

various values of stability parameter A.

Table Al
m A Wi V;
2 4 0.47125 -0.429094784839126 -0.378098940635512
1.42909478483913 0.548816059850774
0.956435464587639 [-1.24942270597577 0.
2.24942270597577 1.39760887500830
3 6 0.695 1.49387844844708 0.646649962127165
1.49654973431122 0.455862817625521
-1.99042818275830 1.02905635860739
1.41218087134444 1.59760032454113 0.

2.26129033257844
-2.85889065711958

1.55344122448889
2.12952443875392

4 0.22 1.20431944918114 0.423802122065587
0.487902005145560 | 0.
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Fig. 15 Wave propagation in an elastic panel problem. Initial condition,

the x component of the velocity vector.
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Fig. 16 'Wave propagation in an elastic panel problem. Initial condition,

the x component of the displacement vector.
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FIRST COMPONENT
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Fig. 18 Wave propagation in an elastic panel problem. The x component
of the velocity vector at time ¢ = 0.25 s.
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Fig. 19 Wave propagation in an elastic panel problem. The y component
of the velocity vector at time ¢ = 0.25 s.
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Fig. 20 Wave propagation in an elastic panel problem. The x component
of the displacement vector at time ¢ = 0.25 s.
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Fig. 21 Wave propagation in an elastic panel problem. The y component

of the displacement vector at time ¢ = 0.25 s.
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Fig. 24 Wave propagat

l problem. An £ adapt

finite element mesh at time ¢t = 0.5 5.
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Fig. 25 Wave propagation in an elastic panel problem. The x com
of the velocity vector at time 1 =0.5 s.
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Fig. 26 Wave propagation in an elastic panel problem. The
of the velocity vector at time £ = 0.5 s.
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Fig. 27 Wave propagation in an elastic panel problem. The x component

of the displacement vector at time ¢ = 0.5 s.
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Fig. 28 Wave propagation in an elastic panel problem. The y component

of the dizplacement vector at time ¢ = 0.5 s.
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Fig. 34 Wave propagation in an :lastic panel problem. The x com

of the velocity vector at time ¢ = 0.75 s.
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Fig. 36 Wave propagation in an elastic panel problem. The x component
of the displacement vector at time ¢ =0.75 s.
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Fig. 37 Wave propagation in an elastic panel problem. The y component
of the displacement vector at time ¢ =0.75 s.
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Fig. 40 Wave propagation in an elastic panel problem. The x -x

component of the stress tensor at time ¢ = 0.75 s.
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“ig. 41 Wave propagation in an elastic panel problem. The y -y

component of the stress tensor at time ¢ = 0.75 s.
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Fig. 42 Wave propagation in an elastic panel problem. The x -y

component of the stress tensor at time ¢ = 0.75 s.
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Fig. 43 Wave propagation in an elastic panel problem. The bound on the
global energy norm of the error as a function of time.
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Fig. 44 Wave propagation in an elastic panel problem. The number of

mesh adaptations as a function of time.




